Control System Performance and Plans

Karen S. White

Controls Group Leader

February 25, 2009

Outline

- Scope
- Performance and Goals
- Upgrades and Plans

Scope

- Instrumentation and Controls, Timing, Machine Protection, Personnel Protection
 - Accelerator
 - Cryogenics
 - RF and Ion Source Test Facilities
 - Target
 - Instrument PPS
 - Conventional Facilities
- Large, highly distributed EPICS based system
- PLC based PPS

Performance

Our job is to provide reliable control systems that meets the needs of our operations and engineering customers

How are we doing?

Beyond Availability

- We also meet the needs of our customers by
 - Implementing upgrades or adding new features to existing controls
 - Providing controls for new or upgraded systems in other areas
 - Improving tools and interfaces that customers use to interact with the Control System
 - Providing tools for Data Management

High Level Goals

- Improve availability long term goal = 99.5%
- Continue to implement improvements and new systems as needed to support machine ramp-up and new instruments (including AIPs)
- Deploy new Archiver and Alarm Handler
- Continue to increase use of RDB based configuration
- Configuration Control especially needed for Software
- Bring documentation up to date
 - Assets in DataStream, including Spares
 - As-builts
 - Establish regular PM schedules

Performance

Availability Index*

*Adapted from Blueprints for High Availability)

8 Managed by UT-Battelle for the U.S. Department of Energy

Availability

- FY08 showed good improvement
- Recent rash of PLC failures
- Working with Cryogenics Group to improve controls
- General plans
 - Continue to strengthen infrastructure servers, COTS redundancy
 - Build development network to improve ability for realistic testing prior to deployment
 - Remove external dependencies
 - Software configuration control (need QA manager)
 - Evaluate COTS hardware MTBF and upgrade as needed
 - R&D on use of redundancy for PLCs, IOCs
 - Increase use of RDB based configuration
 - Improve documentation, manage spares

Challenges – Availability - PLCs

- Allen Bradley Control Logix PLCs used extensively throughout SNS Control and Protection Systems
- Experienced a variety of PLC module failures over the last 2 months, all impacting cryogenics controls
 - 12/31/08 Ethernet module led to 2K coldbox trip 16 hours downtime
 - 1/3/09 I/O module
 - 1/15/09 Analog Input module
 - 1/30/09 Binary Output module
- Replaced one processor in target controls that failed several times but always recovered on reboot
- Prior to these problems, we have had 2 processor failures that were attributed to flaws in manufacturing by Allen Bradley
- Working with Allen Bradley to determine the cause of recent failures, assess the risk associated with our current inventory and implement reliability improvements

Challenges – Availability – Cryogenics Controls

- In addition to PLC problems, we have recurrent loss of communication between a cryo IOC and PLC
 - Has occurred at least 4 times in 2 months
 - First time led to 2K coldbox trip
 - Recently observed intermittent power problem to this crate
- Impact of a failure in cryogenics control system has more severe consequences than failures in other areas
- Cryo and controls engineers identified improvements to ensure systems "fail safe" to avoid damage to equipment (implementation in progress)
- Performing tests to verify systems operate as expected in the event of a failure
- Fabio plans to conduct formal Failure Mode Analysis to identify other improvements (Controls will participate)
- Conduct code reviews for critical areas to ensure proper error checking and exception handling are employed based of FMA

Progress & Plans

- Controls Hardware
- Process Controls
- Infrastructure
- IOC Software
- Protection Systems
- System Tools

Controls Hardware

- MPS Availability Improvements
 - To reduce trips due to noisy inputs
 - To prevent unnecessary front end trips
- LEBT Chopper AIP Custom FPGA Controls
- Timing AIP
 - Addresses obsolescence and reduces complexity
 - Three new FPGA boards

New Timing Master replaces 20 custom VME boards

Process Controls

- SCL vacuum controls AIP ~80% complete (5 of 8 zones)
 - Replaces dated custom modules with standard PLCs
- Converted proprietary CUB chillers controls to EPICS
- Supported Instruments
 - HVAC controls design for BL13 & 14B
 - BL5 argon purge controls
- Improvements to Electrical Power Monitoring System
- FE vacuum controls upgrade
- Ion Source Test Stand vacuum control system

Infrastructure

- Basics
 - New backup system Daily automated tape backups of servers
 - Patching Linux systems
 - Maintaining spare components and systems for servers
- Warm Standby Servers (3) maintain a mirrored copy of critical servers
- Warm standby network switches installed and configured for cryogenic network systems
- ICS clustered Oracle servers
 - Will allow us to removes accelerator dependence on ORNL IT network and machines for RDB

Infrastructure - Plans

- Evaluate use of servers to reduce number and complexity, manage growth and usage
- Investigate clustering for critical (file) servers
- Implement uniform system monitoring

IOC Software

- Errant beam Controls
 - Injection kicker waveform monitoring system deployed
 - Extraction kicker waveform monitoring installed, being tested
- EPICS support for many upgrade projects led by other Groups and Teams:
 - Support for development of HVCM test stand
 - Support for FE, SCL and Ion Source test stand Vacuum upgrades
 - EPICS view of PPS
 - Rework of RF controls and timing for new HVCM

SCL Reconfiguration

Personnel Protection Systems

- MEBT Beam Stop Mode AIP completed
 - Allows the front to run for testing while the rest of the machine is accessible, during extended maintenance periods
- Instrument PPS implemented for four new instruments
- Scheduling for instruments is "challenging"
- Recertify each PPS/IPPS every year
- Small team Crosstraining to ensure all areas are supported
- Evaluating redundant PLC system

System Tools

- As tools are updated
 - Configuration in RDB with web based tools
 - Control System Studio (CSS)
 - Facilitates development of interoperable applications
 - Allows data display from multiple sources transparent to user
 - Big improvement over last generation tools
- Reusing general purpose code for common functions
 - JMS common message service (JAVA)
 - User authentication for configuration control
- New Archiver and Alarm Handler (BEAST)
 - Data in Oracle
 - Configuration in Oracle
 - CSS Viewer

System Tools – Alarm Handler - BEAST

- Recently deployed in Operations
- Audible alarms deployed during last run
- New interface supports both tree view and list view
- View and acknowledge alarms from any console
- Each alarm includes guidance and related display
- Easy to pop up history of any alarm or configuration
- Easy to configure via web interface
- Tools to help determine configuration issues
- Adopted alarm configuration principles based on industry best practices
- Working on configurations with other groups

New Archiver

- Running in parallel with old archiver for many months
- Cutover for Operations on new Oracle cluster during this outage
- New CSS GUI retrieves data from old and new archiver repositories and immediately starts adding new values as they are updated (replaces old archive viewer and striptool)
- Capable of 8000 samples per second (4x estimated need)
- Easy to deploy viewer from any other CSS application

Control System Studio (CSS)

- Deployed first set of modern, portable control system tools
 - Real-time Data
 - Archived Data
 - Alarm Data
 - Configuration Info
- Integrated
 - Easy transfer of PV names within CSS
 - Easy E-Log entries

CSS Tools for Real-time Data

- 'Probe' PVs
- Inspect EPICS database links

-

CSS: Alarm System and Historic Data

- Obtain historic data for PV-in-alarm via mouse clicks
- User can annotate Graph, then send to E-Log

Configuration and Performance Info

Locate IOC and Rack info for PV from RDB

Various alarm system reports

Challenges

- Attracting and retaining proper skills mix
- Balancing workload, setting priorities
 - Upgrades and new features
 - Supporting Operations
 - Improving Availability
 - Updating neglected documentation and data management
 - Implementing configuration control
- Not enough resources to go around

